

www.MathWorksheetsGo.com On Twitter: twitter.com/mathprintables

> I. Model Problems. II. Practice III. Challenge Problems IV. Answer Key

Web Resources

How To Solve Quadratic Equations: <u>www.mathwarehouse.com/quadratic/solve-</u> <u>quadratic-equation.php</u> Completing the Square: <u>www.mathwarehouse.com/quadratic/completing-the-square-</u> <u>math.php</u>

> © <u>www.MathWorksheetsGo.com</u> All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

Graph Paper Maker (free): <u>www.mathworksheetsgo.com/paper/</u>

Online Graphing Calculator : www.mathworksheetsgo.com/calculator/

I. Model Problems

In the following examples you will solve quadratic equations by completing the square.

Isolate $ax^2 + bx$ part of the equation using additive inverse.	$+8x-6$ $+6$ $x^{2}+8x$ $8x+16$	+6
or $b = 4$. Then to complete the square we need to add the third term of the trinomial (b^2). In this case that is 4^2 which equals 16. If we add that to the left side of the equation, we need to add it to the right side too.		
Now take the square root of both sides and simplify	$(x+4)^2$	$= 22$ $= \pm \sqrt{22}$
the radical if needed.	7 1 4	$=\pm \sqrt{22}$
Subtract four from both sides	-4	$-4 = -4 + \sqrt{22}$
Simplify.	x	$=-4\pm\sqrt{22}$
The solution is: $x = -4 \pm \sqrt{22}$.		
<i>Example 2</i> : Solve $2x^2 - 20x + 64 = 0$ over the set of Complex 1	Numbers.	
	20x + 64	= 0
We want <i>a</i> , the coefficient of the x^2 term to be 1. $x^2 - x^2$	$10 \sim \pm 32$	
Divide both sides by 2.	102 + 52	= 0
Divide both sides by 2. Isolate $ax^2 + bx$ part of the equation using additive inverse.	-32	-32
Divide both sides by 2. Isolate $ax^2 + bx$ part of the equation using additive inverse.	-32 $x^{2} - 10x$	-32 = -32
Divide both sides by 2. Isolate $ax^2 + bx$ part of the equation using additive inverse.	-32 $x^{2} - 10x$	-32 = -32
Divide both sides by 2. Isolate $ax^2 + bx$ part of the equation using additive inverse. Complete the square. Half of -10 is -5, and -5 square is 25.	-32 $x^{2} - 10x$ $10x + 25$ $(x - 5)^{2}$	-32 = -32 +25 = -7
Divide both sides by 2. Isolate $ax^2 + bx$ part of the equation using additive inverse.	-32 $x^{2} - 10x$ $10x + 25$ $(x - 5)^{2}$	-32 = -32
Divide both sides by 2. Isolate $ax^2 + bx$ part of the equation using additive inverse. Complete the square. Half of -10 is -5, and -5 square is 25. Now take the square root of both sides and simplify the radical if needed. In this case we are solving over the set of Complex numbers so we have an imaginary solution. (If we were solving over the set	-32 $x^{2} - 10x$ $10x + 25$ $(x - 5)^{2}$	-32 = -32 +25 = -7
Divide both sides by 2. Isolate $ax^2 + bx$ part of the equation using additive inverse. Complete the square. Half of -10 is -5, and -5 square is 25. Now take the square root of both sides and simplify the radical if needed. In this case we are solving over the set of Complex numbers so we have an	-32 $x^{2} - 10x$ $10x + 25$ $(x - 5)^{2}$ $x - 5$	-32 $= -32$ $+25$ $= -7$ $= \pm i\sqrt{7}$
Divide both sides by 2. Isolate $ax^2 + bx$ part of the equation using additive inverse. Complete the square. Half of -10 is -5, and -5 square is 25. Now take the square root of both sides and simplify the radical if needed. In this case we are solving over the set of Complex numbers so we have an imaginary solution. (If we were solving over the set of Reals there would be no Real solution.)	-32 $x^{2} - 10x$ $10x + 25$ $(x - 5)^{2}$ $x - 5$	-32 = -32 +25 = -7

II. Practice solving quadratics by completing the square.

Solve over the set of Reals.

1. $x^{2} + 6x - 9 = 0$ 3. $x^{2} + 16x + 24 = 0$ 5. $x^{2} + 24x - 16 = 0$ 7. $2x^{2} + 8x + 20 = 0$ 9. $5x^{2} - 18x + 4 = 12x + 39$

Solve over the set of Complex Numbers.

- 11. $4x^2 24x + 100 = 0$ 13. $x^2 + 3x - 3 = 0$ 15. $-2x^2 + 6x + 12 = 0$ 17. $2x^2 - 24x + 80 = 0$
- 19. $x^2 14x + 49 = -18$

III. Challenge Problems

- 21. Solve $x^4 18x^2 + 17 = 0$ over the set of Complex Numbers.
- 23. The vertex form of the equation of a parabola is $y = a(x h)^2 + k$. Complete the square to rewrite $y = x^2 + 4x + 5$ in vertex form.
- 25. Solve for x by completing the square. $0 = ax^2 + bx + c$

- 2. $x^{2} 10x + 15 = 0$ 4. $x^{2} - 20x + 4 = 0$ 6. $x^{2} + 6x + 9 = 0$ 8. $3x^{2} + 12x - 5 = 7$ 10. $6x^{2} - 11x + 20 = 2 - 95x$
- 12. $7x^2 20x + 4 = 8x 10$
- 14. $x^2 + 5x + 7 = 0$
- $16. \quad 3x^2 6x + 15 = 0$
- 18. $3x^2 + 9x + 18 = 42 6x$
- $20. \quad 14 = 3x^2 + 21x + 2$
- 22. Solve $x^4 + 20x^2 44 = 0$ over the set of Complex Numbers.
- 24. The vertex form of the equation of a parabola is $y = a(x h)^2 + k$. Complete the square to rewrite $y = x^2 - 8x - 6$ in vertex form.

IV. Answer Key

- $1. \quad x = -3 \pm 3\sqrt{2}$
- 2. $x = 5 \pm \sqrt{10}$ 3. $x = -8 \pm 2\sqrt{10}$
- $4. \quad x = 10 \pm 4\sqrt{6}$
- _ .
- $5. \quad x = -12 \pm 4\sqrt{10}$
- $6. \quad x = -3 \pm \sqrt{2}$
- 7. Ø
- 8. $x = -2 \pm 2\sqrt{2}$
- 9. $x = 4 \pm \sqrt{23}$
- 10. $x = -7 \pm \sqrt{46}$
- 11. $x = 3 \pm i$
- 12. $x = 2 \pm \sqrt{2}$
- $13. \quad x = \frac{-3 \pm \sqrt{21}}{2}$
- $14. \quad x = \frac{-5 \pm i\sqrt{3}}{2}$
- $15. \quad x = \frac{3 \pm \sqrt{33}}{2}$
- 16. $x = 1 \pm 2i$
- 17. $x = 6 \pm 2i$
- $18. \quad x = \frac{-5 \pm \sqrt{57}}{2}$
- $19. \quad x = 7 \pm 3i\sqrt{2}$

20.
$$x = \frac{-7 \pm \sqrt{65}}{2}$$

21. $x = \pm \sqrt{17}, \pm 1$

- 22. $x = \pm \sqrt{2}, \pm i\sqrt{22}$ 23. $y = (x+2)^2 - 1$
- 24. $y = (x-4)^2 22$

$$25. \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

