Answer the following questions about equilibrium.

1. At 740°C, $K_{eq} = 0.0060$ for the decomposition of calcium carbonate (CaCO₃). Find *Q* and predict how the reaction will proceed if [CO₂] = .0004*M*.

$$CaCO_3(s) \leftrightarrows CaO(s) + CO_2(g)$$

2. The equilibrium constant for the following reaction at 527°C is 5.10. If [CO] = 0.15 M,

reaction will proceed.

 $[H_2O] = 0.25 M$, $[H_2] = 0.42 M$, and $[CO_2] =$

0.37 M, calculate Q and determine how the

5. At 500°C, the equilibrium constant for the following reaction is 0.080. Given that $[NH_3] = 0.0596 M$, $[N_2] = 0.600 M$, and $[H_2] = 0.420 M$, find *Q* and predict how the reaction will proceed.

$$N_{2}(g) + 3H_{2}(g) \leftrightarrows 2NH_{3}(g)$$

6. For the decomposition of antimony pentachloride (SbCl₅) $K_{eq} = 0.0251$. What is the value of Q if [SbCl₅] = 0.095 M, [SbCl₃] = 0.020 M, and [Cl₂] = 0.050 M? How will this reaction proceed?

$$SbCl_{5}(g) \leftrightarrows SbCl_{3}(g) + Cl_{2}(g)$$

3. At 340°C, $K_{eq} = 0.064$ for the reaction of rust with hydrogen gas. Given the $[H_2] = 0.45 M$ and $[H_2O] = 0.37 M$, find Q and predict how the reaction will proceed.

 $CO(g) + H_2O(g) \leftrightarrows H_2(g) + CO_2(g)$

$$Fe_2O_3(s) + 3H_2(g) \leftrightarrows 2Fe(s) + 3H_2O(g)$$

7. At 1000°C, $K_{eq} = 1.0 \times 10^{-13}$ for the following reaction. If [HF] = 23.0 *M*, [H₂] = 0.540 *M*, and [F₂] = 0.38 *M*, determine the value of *Q* and predict how the reaction will proceed.

$$2HF(g) \leftrightarrows H_2(g) + F_2(g)$$

4. The equilibrium constant for the following reaction at 2130°C is 0.0025. If $[N_2] = 0.81 M$, $[O_2] = 0.75 M$, and [NO] = 0.030 M, find Q and determine the direction in which the reaction will proceed.

$$N_2(g) + O_2(g) \leftrightarrows 2NO(g)$$

8. At 1227 °C, K_{eq} for the following reaction is 0.15. If $[SO_2] = 0.344 M$, $[O_2] = 0.172 M$, and $[SO_3] = 0.056 M$, find Q and determine how the reaction will proceed.

$$2SO_2(g) + O_2(g) \leftrightarrows 2SO_3(g)$$