Rate Law Worksheet

- 1. The rate of a reaction is given by k [A][B]. The reactants are gases. If the volume occupied by the reacting gases is suddenly reduced to one-fourth the original volume, what is the rate of reaction (relative to the original rate)?
- 2. The following data are for Questions a through f and refer to the reaction:

 $A + 2B + 3C \rightarrow 2Y + Z$. All data were taken at 50.0°C.

trial	initial [A]	initial [B]	initial [C]	Rate of [Y]
#1	0.10	0.02	0.04	10 <i>M</i> /s
#2	0.10	0.03	0.04	15 <i>M</i> /s
#3	0.20	0.02	0.08	80 <i>M</i> /s
#4	0.20	0.02	0.16	160 <i>M</i> /s
#5	0.05	0.01	0.08	?

- a. What is the rate of formation of Y if [B] is doubled?
- b. What is the rate of formation of Z in trial 3 (in M/s)?
- c. What is the rate of disappearance of C in trial 2 (in M/s)?
- d. What is the rate law derived for the above data?
- e. What is the missing rate (trial 5) in M/s?
- f. What is the rate constant?
- 3. The times listed in the following table are those required for the concentration of $S_2O_8^{-2}$ to decrease by 0.00050 M as measured in an "iodine clock" reaction at 23°C. What is the rate law? The net reaction is: $S_2O_8^{-2} + 2 \text{ I}^- \rightarrow \text{I}_2 + 2 \text{ SO}_4^{-2}$

trial	initial $[S_2O_8^{2-}]$	initial [I-]	Time (sec)
#1	0.0400	0.0800	39
#2	0.0400	0.0400	78
#3	0.0100	0.0800	156
#4	0.0200	0.0200	?

- a. Calculate the expected time in seconds for trial 4.
- b. What is the rate law?
- c. What is the rate constant?
- 4. Determine the rate law and calculate the rate constant for the following data.

trial	initial [A]	initial [B]	Rate (M/s)
#1	1.00 x 10 ⁻³	0.25×10^{-3}	0.26 x 10 ⁻⁹
#2	1.00×10^{-3}	0.50×10^{-3}	0.52×10^{-9}
#3	1.00×10^{-3}	1.00×10^{-3}	1.04 x 10 ⁻⁹
#4	2.00 x 10 ⁻³	1.00×10^{-3}	4.16 x 10 ⁻⁹
#5	3.00×10^{-3}	1.00×10^{-3}	9.36 x 10 ⁻⁹
#6	4.00×10^{-3}	1.00×10^{-3}	16.64 x 10 ⁻⁹

5. Determine the rate law and calculate the rate constant for the following data.

trial	initial [X]	initial [Y]	Rate (M/s)
#1	1.00×10^{-2}	4.00×10^{-4}	6.00×10^{-3}
#2	2.00 x 10 ⁻²	4.00×10^{-4}	1.20×10^{-2}
#3	4.00×10^{-2}	4.00×10^{-4}	2.40×10^{-2}
#4	1.00×10^{-2}	8.00 x 10 ⁻⁴	6.00×10^{-3}

Answer Key Rate Law Worksheet

- 1. 16x
- 2, a. doubled
 - b. 40 M/s
 - c. 22.5 M/s
 - d. $R=k[A]^2[B][C]$
 - e. 2.5 M/s
 - f. $1.25 \times 10^6 \text{ M}^{-3} \text{s}^{-1}$
- a. 312s 3.

 - b. $R=k[S_2O_8^{-2}][I^-]$ c. $k=4.0 \times 10^{-3} M^{-1} s^{-1}$
- 4. $R=k[A]^2[B]$ $k=1.04 M^{-2}s^{-1}$
- 5. R=k[X] The reaction is zeroth order as to [Y] changes in the [Y] does not affect the reaction rate. k=0.600 s⁻¹