CHEM1612 Worksheet 4 - Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: The Equilibrium Constant

1. $\quad K_{\mathrm{c}}(\mathrm{A})=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]}{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}}$
$K_{\mathrm{c}}(\mathrm{B})=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]^{1 / 2}}{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]}$
$K_{\mathrm{c}}(\mathrm{C})=\frac{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]}$
$K_{\mathrm{c}}(\mathrm{D})=\frac{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]^{1 / 2}}$
2. (a) $K_{\mathrm{c}}(\mathrm{B})=\sqrt{K_{c}(\mathrm{~A})}$
(b) $\quad K_{\mathrm{c}}(\mathrm{A})=1 / K_{\mathrm{c}}(\mathrm{C})$
3. $\quad K_{\mathrm{c}}(\mathrm{A})=0.078, K_{\mathrm{c}}(\mathrm{B})=0.280, K_{\mathrm{c}}(\mathrm{C})=12.8$.

Model 2: The Reaction Quotient

1. The reaction will shift to the right to decrease $\left[\mathrm{NO}_{2}(\mathrm{~g})\right]$.
2. The reaction will shift to the left to increase $\left[\mathrm{NO}_{2}(\mathrm{~g})\right]$.
3. (a) $Q_{\mathrm{c}}=0.0500$
(b) $Q_{\mathrm{c}}=0.200$.
4. (a) If $Q_{\mathrm{c}}<K_{\mathrm{c}}$, the reaction will shift to the right.
(b) If $Q_{\mathrm{c}}>K_{\mathrm{c}}$, the reaction will shift to the left.

Model 3: Equilibrium calculations

Model 2 gives you the tools to predict the direction in which a reaction will move if it is not at equilibrium. The concentrations that will be obtained when equilibrium is finally reached can be calculated using an ICE table: initial-change-equilibrium.

Consider the starting mixture in Q1 of Model 2: $\left[\mathrm{NO}_{2}(\mathrm{~g})\right]=2.00 \mathrm{M}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]=0.20 \mathrm{M}$. These are the initial concentrations and are written in the first row of the reaction table below. You know from Model 2 that this reaction will shift so that some $\mathrm{NO}_{2}(\mathrm{~g})$ reacts to make $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$. We do not know how much will react but we can calculate it:

	$2 \mathrm{NO}_{2}(\mathrm{~g})$	\rightleftharpoons	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
initial	2.00		0.20
change	$-2 x$		$+x$
equilibrium	$2.00-2 x$		$0.20+x$

Critical thinking questions

1. See above.
2. Complete the third row of the table.
3. $K_{\mathrm{c}}(\mathrm{A})=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]}{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}}=\frac{(0.20+\mathrm{x})}{(2.00-2 \mathrm{x})^{2}}$
4. $x=0.070 \mathrm{M}$ so $\left[\mathrm{NO}_{2}(\mathrm{~g})\right]=1.86 \mathrm{M}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]=0.27 \mathrm{M}$
(The second root is non-physical as it leads to a negative concentration for NO_{2}.

The $\mathrm{CO}(\mathrm{g})$ in water gas can be reacted further with $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in the so-called "water-gas shift" reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

At $900 \mathrm{~K}, K_{\mathrm{c}}=1.56$ for this reaction. A sample of water gas flowing over coal at 900 K contains a $1: 1$ mole ratio of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$, as well as $0.250 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. This sample is placed in a sealed container at 900 K and allowed to come to equilibrium, at which point it contains $0.070 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CO}_{2}(\mathrm{~g})$. What was the initial concentration of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ in the sample?

The reaction table is

	$\mathbf{C O}(\mathrm{g})$	$\mathbf{H}_{2} \mathrm{O}(\mathrm{g})$	\rightleftharpoons	$\mathbf{C O}_{\mathbf{2}}(\mathrm{g})$	$\mathbf{H}_{2}(\mathrm{~g})$
initial	\mathbf{x}	0.250		0	\mathbf{x}
change	$\mathbf{- 0 . 0 7 0}$	$\mathbf{- 0 . 0 7 0}$		$+\mathbf{0 . 0 7 0}$	$+\mathbf{0 . 0 7 0}$
equilibrium	$\mathbf{x}-\mathbf{0 . 0 7 0}$	$\mathbf{0 . 2 5 0}-\mathbf{0 . 0 7 0}$		$\mathbf{0 . 0 7 0}$	$\mathbf{x}+\mathbf{0 . 0 7 0}$

The equilibrium constant in terms of concentrations, K_{c}, is:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}(\mathrm{~g})\right]\left[\mathrm{H}_{2}(\mathrm{~g})\right]}{\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right][\mathrm{CO}(\mathrm{~g})]}=\frac{(0.070)(\mathrm{x}+0.070)}{(0.180)(\mathrm{x}-0.070)}=1.56 \\
& x=[\mathrm{CO}(\mathrm{~g})]_{\text {initial }}=\left[\mathrm{H}_{2}(\mathrm{~g})\right]_{\text {initial }}=0.12 \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
$$

$$
[\mathrm{CO}]=\left[\mathrm{H}_{2}\right]=\mathbf{0 . 1 2} \mathbf{~ m o l ~ L}^{-1}
$$

If the walls of the container are chilled to below $100^{\circ} \mathrm{C}$, what will be the effect on the concentration of $\mathrm{CO}_{2}(\mathrm{~g})$?

At temperatures below $100{ }^{\circ} \mathrm{C}$, the water vapour will condense to form $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. Following Le Chatelier's principle, the equilibrium will shift to the left as $\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]$ is reduced by this process and so $\left[\mathrm{CO}_{2}(\mathrm{~g})\right]$ will decrease.

- At $700^{\circ} \mathrm{C}$, hydrogen and iodine react according to the following equation.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad{ }^{2} \quad 2 \mathrm{HI}(\mathrm{~g}) \quad K_{\mathrm{c}}=49.0
$$

Hydrogen also reacts with sulfur at $700^{\circ} \mathrm{C}$:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad K_{\mathrm{c}}=1.075 \times 10^{8}
$$

Determine K_{c} for the following overall equilibrium reaction at $700^{\circ} \mathrm{C}$.

$$
2 \mathrm{I}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{S}_{2}(\mathrm{~g})+4 \mathrm{HI}(\mathrm{~g})
$$

The overall reaction corresponds to the twice the first reaction combined with the reverse of the second reaction:

$$
\begin{array}{ll}
2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HI}(\mathrm{~g}) & K_{\mathrm{c}}(\mathbf{1})=(49.0)^{2} \\
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) & \\
\cline { 1 - 1 } 2\left(\mathbf{I _ { 2 }}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{S}_{2}(\mathrm{~g})+4 \mathrm{HI}(\mathrm{~g})\right. &
\end{array} \begin{aligned}
& K_{\mathrm{c}}(\mathbf{3})=K_{\mathrm{c}}(1) \times K_{\mathrm{c}}(\mathbf{1})
\end{aligned}
$$

The $1^{\text {st }}$ reaction is doubled so the original equilibrium constant is squared.
The $2^{\text {nd }}$ reaction is reversed so the reciprocal of the equilibrium constant is used.
The two reactions are then combined and the overall equilibrium constant is then the product:

$$
\begin{array}{r}
K_{\mathrm{c}}(3)=K_{\mathrm{c}}(1) \times K_{\mathrm{c}}(2)=(49.0)^{2} \times\left(1 /\left(1.075 \times 10^{8}\right)=2.23 \times 10^{-5}\right. \\
K_{\mathrm{c}}=2.23 \times 10^{-5}
\end{array}
$$

If 0.250 mol of $\mathrm{HI}(\mathrm{g})$ is introduced into a 2.00 L flask at $700^{\circ} \mathrm{C}$, what will be the concentration of $\mathrm{I}_{2}(\mathrm{~g})$ at equilibrium?

The initial concentration of $\mathbf{H I}(\mathrm{g})$ is $0.250 / 2.00 \mathrm{~mol} \mathrm{~L}^{-1}=0.125 \mathrm{~mol} \mathrm{~L}^{-1}$.

	$\mathbf{H}_{2}(\mathrm{~g})$	$\mathbf{I}_{2}(\mathrm{~g})$	\rightleftharpoons	$\mathbf{2 H I}(\mathrm{g})$
Initial	0	0		0.125
Change	$+x$	$+x$		$-2 x$
Equilibrium	x	x		$0.125-2 x$

Thus,

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(0.125-2 x)^{2}}{(x)(x)}=\frac{(0.125-2 x)^{2}}{x^{2}}=49.0(\text { from 2008-N-5) }
$$

$(49.0)^{1 / 2}=\frac{(0.125-2 x)}{x}$
Rearranging gives $x=\left[\mathbf{I}_{2}(\mathrm{~g})\right]=0.0139 \mathrm{M}$.

If 0.274 g of $\mathrm{H}_{2} \mathrm{~S}$ were now introduced into the same flask, what would be the concentration of $\mathrm{S}_{2}(\mathrm{~g})$ at equilibrium?

The molar mass of $\mathrm{H}_{2} \mathrm{~S}$ is $(2 \times 1.008(\mathrm{H})+32.06(\mathrm{~S}))=34.08 \mathrm{~g} \mathrm{~mol}^{-1}$. Hence, 0.274 g of $\mathrm{H}_{2} \mathrm{~S}$ corresponds to:

$$
\begin{aligned}
\text { number of moles } & =\text { mass } / \text { molar mass } \\
& =(0.274 \mathrm{~g}) /\left(\mathbf{3 4 . 0 8} \mathrm{g} \mathrm{~mol}^{-1}\right)=8.04 \times \mathbf{1 0}^{-3} \mathbf{~ m o l}
\end{aligned}
$$

The initial concentration of $\mathrm{H}_{2} \mathrm{~S}$ is thus $8.04 \times 10^{-3} \mathrm{~mol} / 2.00 \mathrm{M}=4.02 \times 10^{-3} \mathrm{M}$.
From above, $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=0.0139 \mathrm{M}$ and $[\mathrm{HI}(\mathrm{g})]=(0.125-2 \times 0.0139) \mathrm{M}=0.0972 \mathrm{M}$.
Using the overall equilibrium reaction derived in 2008-N-5:

	$2 \mathbf{I}_{2}(\mathbf{g})$	$\mathbf{2 H}_{2} \mathbf{S}(\mathrm{~g})$	\rightleftharpoons	$\mathbf{S}_{2}(\mathrm{~g})$	$\mathbf{4 H I}(\mathrm{g})$
Initial	$\mathbf{0 . 0 1 3 9}$	0.00402		0	0.0972
Change	$-2 x$	$-2 x$		$+x$	$+2 x$
Equilibrium	$0.0139-2 x$	$0.00402-2 x$		x	$0.0972+4 x$

Thus,

$$
\begin{aligned}
K_{\mathrm{c}}=\frac{\left[\mathrm{S}_{2}\right][\mathrm{HI}]^{4}}{\left[\mathrm{I}_{2}\right]^{2}\left[\mathrm{I}_{2}\right]^{2}} & =\frac{(x)(0.0972+4 x)^{4}}{(0.0139-2 x)^{2}(0.00402-2 x)^{2}} \\
& \sim \frac{(x)(0.0972)^{4}}{(0.0139)^{2}(0.00402)^{2}}=2.23 \times 10^{-5}(\text { from 2008-N-5 })
\end{aligned}
$$

where the small \boldsymbol{x} approximation has been used as K_{c} is so small. This gives:

$$
x=\left[\mathrm{S}_{2}(\mathrm{~g})\right]=7.82 \times 10^{-10} \mathrm{M}
$$

Answer: $\mathbf{7 . 8 2 \times 1 0} \mathbf{1 0}^{\mathbf{- 1 0}} \mathbf{M}$

Key to success: practice further by completing this week's tutorial homework
Key to even greater success: practice even further by completing this week's suggested exam questions

